Friday , October 18 2019
Home / unitedkingdom / FIONA measures the mass number of two superheavy elements

FIONA measures the mass number of two superheavy elements



A view of FIONA's instrumentation. Credit: Marilyn Chung / Berkeley Lab

A team led by nuclear physicists at the Department of Energy Lawrence Berkeley National Laboratory (Berkeley Lab) reported the first direct measurements of mass numbers for the nuclei of two super-heavy elements: Moscovium, element 115, and nihonium, element 113.


They obtained the results using FIONA, a new tool at Berkeley Lab that is designed to solve the nuclear and atomic properties of the heavest elements. The results are detailed in the Nov. 28 edition of the Physical Review Letters journal

FIONA is an acronym that means: "For the Identification of Nuclide A," with "A" representing the scientific symbol for an element's mass number-the total number of protons and neutrons in an atom's nucleus. Protons are positively charged and the proton count is also known as the atomic number; neutrons have a neutral charge. Superheavy elements are human-made and have a higher atomic number than those found in naturally occurring elements.

The global rush for mass numbers

Gathering and validating this first data from FIONA had been a top priority for the Lab's 88-Inch Cyclotron and Nuclear Science Division since FIONA's commissioning was wrapped up in early 2018. Cyclotron staff worked with visiting and in-house scientists to conduct the first run experimental FIONA, which spanned five weeks.

"It's very exciting to see Fiona come online, as it's extremely important to pin down the masses of superheavy elements," said Barbara Jacak, director of Nuclear Science Division. "Until now the mass assignments have been made with circumstantial evidence rather than by direct measurement."

Jackie Gates, a staff scientist at Berkeley Lab's Nuclear Science Division who played a leading role in the conception, construction, and testing of FIONA, and who leads the efforts of FIONA's determination of numbers, said, "There has been a lot of interest in making an experimental measurement of superheavy mass numbers. "

Gates added that this effort to measure superheavy elements' mass numbers is of global interest, with teams from Argonne National Laboratory and Japan's nuclear research program among those also making mass measurements of superheavy elements using approaches or tools slightly different.

FIONA is a new system at Berkeley Lab's 88-Inch-Cyclotron that allows direct mass number measurements of superheavy elements. Credit: Marilyn Chung / Berkeley Lab

Guy Savard, senior scientist at Argonne National Laboratory, designed, built, and contributed several components for FIONA. He also helped in the commissioning of FIONA and in his first scientific campaign.

Roderick Clark, a senior scientist at the Berkeley Lab's Nuclear Science Division, said, "Everyone is coming together in this grand race. This can open up a whole range of physics of these heavy and super-heavy samples," as well as new studies of the structure and chemistry of these exotic elements, and a deeper understanding of how they bond with other elements.

"If we can measure the mass of one of these superheavy elements, you can nail down the entire region," Clark said.

A new chapter in heavy element research

The mass number and atomic number (or "Z") – a measure of the total number of protons in an atom's nucleus-of superheavy elements have relied on the accuracy of mass nuclear models. So it's important to have a reliable way to measure these numbers with experiments in case there is a problem with models, noted Ken Gregorich, a recently retired senior scientist at Berkeley Lab's Nuclear Science Division who worked closely with Gates to build and commission FIONA.

For example, superheavy elements could possibly exhibit unexpected nuclear shapes or densities of protons and neutrons that are not accounted for in the models, he said.

Berkeley Lab has made enormous contributions to the field of heavy-element research: Lab scientists have played a role in the discovery of 16 elements on the periodic table, dating back to the synthesis of neptunium in 1940, and also provided hundreds of identifications of isotope . Isotopes are different forms of elements that share the same number of protons but have a different number of neutrons in their nuclei.

Fiona (see related article) is an add-on to the Berkeley Gas-filled Separator (BGS). For decades, the BGS has separated heavy elements from other types of charged particles that can act as unwanted "noise" in experiments. FIONA is designed to trap and cool individual atoms, separate them based on their mass and charge properties, and deliver them to a low-noise detector station at a timescale of 20 milliseconds, or 20 thousandths of a second.

Jackie Gates, left, and Ken Gregorich, work on FIONA during its early commissioning in 2017. Credit: Marilyn Chung / Berkeley Lab

'One atom a day'

"We can make one atom a day, give or take," of a desired superheavy element, Gregorich noted. In its early operation, FIONA was specifically tasked with trapping individual moscovium atoms. "We have about a 14 percent chance of trapping each atom," he added. So researchers had hoped to capture a single measurement of moscovium's mass number per week.

Moscovium was discovered in 2015 in Russia by a joint U.S.-Russian team that included scientists from Lawrence Livermore National Laboratory, and the discovery of nihonium was credited to a team in Japan in 2004. The names of the elements were formally approved in 2016.

To produce moscovium, scientists at the 88-Inch Cyclotron bombarded a target composed of americium, an isotope of an element discovered by Berkeley Lab's Glenn T. Seaborg and others in 1944, with a beam particle produced from the rare isotope calcium-48. The necessary half-gram of calcium-48 was provided by the DOE Isotope Program.

There is a distinct looping signature for each atom trapped and measured by FIONA-a bit like watching a fixed point on a bicycle tire as the bicycle rolls forward. The trajectory of this looping behavior is related to the atomic "mass-to-charge ratio-the timing and position of the energy signal measured in the detector tells scientists the mass number.

Ideally, the measurement includes several steps in the particle's decay chain: Moscovium has a half-life of about 160 milliseconds, meaning an atom has a 50 percent chance of decaying to another element known as a "daughter" element in the decay chain every 160 milliseconds. Capturing its energy signature at several steps in this decay chain can confirm which parent atom began this cascade.

"We have been trying to establish the mass number and the proton number here for many years now," said Paul Fallon, a senior scientist at the Berkeley Lab's Nuclear Science Division who leads the low-energy program's division. Detector sensitivity has steadily improved, as you have the ability to isolate individual atoms from other noise, I noted. "Now, we have our first definitive measurements."

Confirming the mass numbers of element 113 and element 115

In FIONA's first scientific run, researchers identified one moscovium atom and its related decay daughters, and one nihonium atom and its decay daughters. The measurements of the atoms and the decay chains confirm the predicted mass numbers for both elements.

While researchers had been seeking only to create and measure the properties of a moscovium atom, they were also able to confirm a measurement for nihonium after a moscovium atom decayed into nihonium before reaching FIONA.

"The success of this first measurement is incredibly exciting," said Jennifer Pore, a fellow postdoctoral who was involved in FIONA's commissioning experiments. "The unique capabilities of FIONA have sparked a new renaissance of super-heavy element research at the 88-Inch Cyclotron."

Gregorich credited the efforts of staff at the 88-Inch Cyclotron-including mechanical, electrical, operations, and control systems experts-for maximizing FIONA experimental time during its initial five-week scientific run.

I have noted particular contributions from other BGS and FIONA group members, including Greg Pang, a former project scientist who was involved in FIONA's construction and testing; Jeff Kwarsick, a graduate student whose Ph.D. thesis is focused on FIONA results; and Nick Esker, a former graduate student whose Ph.D. work focused on the mass separator technique incorporated by FIONA.

Plans for new measurements and the addition of 'SHEDevil'

Fallon said that another scientific run is planned for FIONA within the next six months, during which researchers of nuclear physics may pursue a new round of measurements for moscovium and nihonium, or for other elements super-heavy.

There are also plans to install and test a new tool, dubbed "SHEDevil" (for Super Heavy Element Detector for Extreme Ventures In Low statistics) that will help scientists learn the shape of superheavy atoms' nuclei by detecting gamma rays produced in their decay. These gamma rays will provide clues to the arrangement of neutrons and protons in the nuclei.


Explore further:
Measuring the mass number of superheavy, human-made elements

Journal reference:
Physical Review Letters

Provided by:
Lawrence Berkeley National Laboratory


Source link